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The synchrotron equation of motion in quasi-isochronous~QI! storage rings is transformed to a universal
Weierstrass equation, where the solution is given by Jacobian elliptic functions. Scaling properties of the QI
Hamiltonian are derived. The effects of phase space damping and the sensitivity of particle motion to external
harmonic modulation are studied. We find that the rf phase modulation is particularly enhanced in QI storage
rings. Exact formula and sum rules for resonance strength coefficients are derived. When the QI dynamical
system is subject to harmonic modulation, it exhibits a sequence of period-2 bifurcations leading to global
chaos in a region of modulation tune. This means that the operators of QI storage rings should pay special
attention to rf phase noise.@S1063-651X~96!06707-4#

PACS number~s!: 29.20.Dh, 03.20.1i, 05.45.1b

I. INTRODUCTION

Very short electron bunches, e.g., submillimeter in bunch
length, can be important for such applications as time re-
solved experiments, next generation light sources, coherent
synchrotron radiation, and damping rings for the next linear
colliders. A possible method for producing short bunches is
to reduce the phase slip factor or the momentum compaction
factor for electron storage rings. Because of its potential ben-
efit, interest in the physics of the low-ac lattice has recently
grown @1–7#.

The fractional path length difference between an off-
momentum particle and the synchronous particle is related to
the fractional momentum deviation by

DC

C0
5acd, d5

Dp

p0
,

whereC0 andp0 are the circumference and the momentum
of the synchronous particle, andac is called the momentum
compaction factor. Here we neglect the change of orbit
length due to betatron motion.

For actual storage rings, the momentum compaction fac-
tor is a function of the fractional momentum deviation, i.e.,

ac5ac01ac1d1•••.

In most applications, the expansion can be truncated at the
second term because the higher order terms are small. In-
cluding the velocity difference between the off-momentum
particle and the synchronous particle, the fraction deviation
of the revolution frequency is given by

Dv

v0
52hd, ~1.1!

with the phase slip factor

h5h01h1d1•••, ~1.2!

whereh0 and h1 are the first order and the second order
phase slip factors. In realistic storage rings, the truncation of
the phase slip factor at theh1 term is a good approximation.

Because the velocity difference between electrons in a stor-
age ring is very small, allh i ’s are equal toaci’s.

For nominal storage rings, whereuh1du!uh0u, the syn-
chrotron motion is dominated by theh0 term, where particles
are grouped together into bunches inside stable rf buckets.
For small bunches inside the bucket, the bunch width is pro-
portional toAuh0u ~see Appendix A!. Thus a short bunch
regime is equivalent to the condition of a smalluh0u. Since
h is related to the the revolution frequency deviation@see Eq.
~1.1!#, the condition of smalluhu is also called the isochro-
nous condition or quasi-isochronous~QI! condition. A lattice
which provides the QI condition is called a QI lattice. For
electron storage rings, the QI condition is equivalent to a
small momentum compaction.

In the past few years, many low-ac experiments were
performed@6#. These experiments showed that bunch lengths
were smaller for low-ac lattices. However, the total stored
beam current was also small. At the high current limit, these
experiments also showed that the bunch lengths were deter-
mined mainly by the potential well distortion resulting from
a broadband impedance. Although experiments have not yet
determined the benefits of a QI lattice, a better understanding
of the particle dynamics in the QI Hamiltonian system may
well be the source of future innovation. Furthermore, in an
experiment at the advanced light source~ALS! at the
Lawrence Berkeley National Laboratory, beams in the QI
condition were observed to split into satellite bunches@7#.
What causes the beam to split into beamlets? What is the
sensitivity of the QI lattice to external perturbation such as rf
phase noise?

This paper studies synchrotron motion at or near the QI
condition. We will study the sensitivity of the Hamiltonian
system under harmonic modulation. In Sec. II we will show
that the QI synchrotron Hamiltonian can be transformed to a
universal Weierstrass equation, which is independent of the
rf voltage, synchronous phase angle, energy,h0, and h1 .
The solution for the particle motion in this universal QI
Hamiltonian is given by the Weierstrass̀ function or the
Jacobian elliptic function@8,9#. Properties of this universal
QI Hamiltonian will be discussed. The increase in the stable
phase space area due to phase space damping will also be
addressed. Section III discusses the effect of rf noise on par-
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ticle motion. In the presence of harmonic phase modulation,
parametric resonances will be identified. We will show that
the phase space can become chaotic with relatively weak
modulation. In the presence of strong damping with moder-
ate harmonic modulation, the system undergoes a sequence
of period-2 bifurcation en route towards strange chaotic at-
tractors. Based on our systematic study, some beam dynam-
ics experiments will also be suggested in Sec. IV. The con-
clusion is given in Sec. V.

II. PARTICLE HAMILTONIAN IN QI STORAGE RINGS

For synchrotron storage rings operating near the isochro-
nous condition, the phase slip factor is given by Eq.~1.2!,
and the small amplitude synchrotron tune is given by

ns5AheVuh0cosfsu
2pb2E0

, ~2.1!

whereh,V, andfs are the harmonic number, rf voltage, and
the synchronous phase angle, respectively, andbc andE0
are the velocity and the energy of the beam. Usingt5nsu as
the time variable, whereu5s/R is the orbiting angle, and
using (x,p) as the conjugate phase space coordinates, where

x52
h1

h0

Dp

p0
, p5

dx

dt
, ~2.2!

the synchrotron Hamiltonian for particle motion in QI stor-
age rings is given by~see Appendix A!

H5
1

2
p21

1

2
x22

1

3
x3. ~2.3!

The ‘‘energy’’ E of the autonomous Hamiltonian is a con-
stant of motion withEP@0,16] for particles inside the bucket.
Figure 1 shows the potential energy and the stable bucket
area for the Hamiltonian. The bucket is plotted sideways so
that the corresponding potential energy has a similar coordi-

natex. We usex to represent the normalized coordinate of
Eq. ~2.2! because it is related to the radial closed orbit.

The equation of motion for a particle with energyE is
given by

S dxdt D
2

5
2

3
x32x212E. ~2.4!

Letting u5t/A6 and`5x, the equation of motion is trans-
formed to the standard Weierstrass equation@9#:

S d`~u!

du D 254~`2e1!~`2e2!~`2e3!, ~2.5!

where the turning points,e1>e2>e3 , are given by

e15
1

2
1cos~j!, e25

1

2
1cos~j2120°!,

e35
1

2
1cos~j1120°!,

j5
1

3
arccos~1212E!.

Table I lists the ranges of interest for relevant parameters of
this dynamical system. Figure 1 shows the bucket area and
the potential energy as a function ofx, which is proportional
to the fractional momentum deviation of the synchronous
particle.

The Weierstrass elliptic̀ function is a single valued dou-
bly periodic function of a single complex variable. For par-
ticles inside the separatrix, the discriminant is positive, i.e.,
D5648E(126E).0, and the Weierstrass̀ function can be
expressed in terms of the Jacobian elliptic function~see Ap-
pendix B!:

x~ t !5e31~e22e3!sn
2SAe12e3

6
tUmD , ~2.6!

m5
e22e3
e12e3

5
sinj

sin~j160°!
<1. ~2.7!

Here the Jacobian elliptic function is defined as

sin~vum!5sinw, v5E
0

w dz

A12msin2z
. ~2.8!

The period and the tune of the elliptic function are given by

FIG. 1. The rf bucket~left plot! and the potential~right plot! for
the normalized QI Hamiltonian. Three turning pointse1 , e2 , and
e3 are also marked. Note here that the coordinatex is associated
with the momentum deviationd and the ordinatep is proportional
to the phase coordinatef.

TABLE I. Parametric range of the Weierstrass` function.

E 0 1/12 1/6
j 0 30° 60°
e1 3/2 (11A3)/2 1
e2 0 1

2 1
e3 0 (12A3)/2 21/2
m 0 1/2 1
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T52A6
K~m!

Ae12e3
, Q5

2p

T
5

p@A3 sin~j160°!#1/2

A6K~m!
.

~2.9!

Figure 2 showsQ(E) as a function of energy. At the center
of the bucket, whereE50, we haveQ51 and at the sepa-
ratrix, whereE5 1

6, we haveQ50. In the original accelerator
coordinate system, the synchrotron tune becomes

Qs5ns
p@A3 sin~j160°!#1/2

A6K~m!
. ~2.10!

Thus the small amplitude synchrotron tune isns . In particu-
lar, we note that the synchrotron tune decreases to zero very
sharply near the separatrix. Because of the sharp decrease in
synchrotron tune near the separatrix, parametric resonances
induced by the time-dependent perturbation overlap one an-
other and give rise to chaos.

A. Nonlinear detuning parameter

Substituting the ansatz for a small amplitude expansion

x5A2J cosc ~2.11!

into the Hamiltonian, where (J,c) are approximate action-
angle variables, we obtain

H5J2
1

3
~2J!3/2cos3c. ~2.12!

Using the generating function

F2~ J̄,c!5 J̄c1
1

12
~2J̄!3/2S 13 sin3c13 sinc D ,

~2.13!

we obtain

J5
]F2~ J̄,c!

]c
5 J̄1

1

3
~2J̄!3/2cos3c, ~2.14!

and the new Hamiltonian becomes

H5 J̄1
1

3
~2J̄!3/2cos3c2

1

3
~2J!3/2cos3c. ~2.15!

Expanding the Hamiltonian to the second order in the new
action variableJ̄, the time averaged Hamiltonian becomes

^H& c̄5 J̄2
4

3
J̄2^cos6c̄& c̄5 J̄2

a

2
J̄2, ~2.16!

wherea5 5
6 is the detuning parameter. It is worth pointing

out that the detuning parameter is larger than that of the
nominal rf Hamiltonian, wherea5 1

8 ~see, e.g., Refs.
@12,13#!. The most important difference between the tunes of
the QI Hamiltonian system and the nominal rf pendulum
Hamiltonian is the behavior of the tunes at large amplitude
oscillations near the separatrix.

Performing canonical perturbation calculation to the next
order, the detuning parameter becomes

H5 J̄2
5

12
J̄22

77

864
J̄3, ~2.17!

or equivalently, the tune is given by

FIG. 2. Q(E) vs E. The first
order and the second order detun-
ing terms of Eq.~2.18! are also
shown. Because of the sharp drop
of the synchrotron tuneQ(E)
around the separatrix, parametric
resonances of all orders overlap
with each other near the separatrix
trajectory and give rise to stochas-
ticity.
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Q512
5

6
J̄2

77

288
J̄2. ~2.18!

Figure 2 plotsQ(E) vsE, where the first order detuning and
the second order detuning are shown. Note here that the first
order detuning is a good approximation to the synchrotron
tune forE<1/12, yet the second order detuning parameter
does not improve the approximation beyondE.1/12.

B. Action-angle variables

The action of a Hamiltonian torus is defined as

J5
1

2p R p dx5
1

p
A2

3Ee3
e2A~e12x!~e22x!~x2e3!dx.

~2.19!

Since the Hamiltonian torus can be described by
x5e31(e22e3) sin

2w, we have ~Formula 3.671 of Ref.
@10#!

J5
2

p
A2

3
~e22e3!

2~e12e3!
1/2

3E
0

p/2

sin2w cos2wA12msin2wdw

5
1

8
A2

3
~e22e3!

2~e12e3!
1/2FS 32 ,2 1

2
;3;mD ,

~2.20!

where hypergeometric functionF is given by@9#

FS 32 ,2 1

2
;3;mD512

1

4
m2

5

128
m22

7

512
m32•••.

~2.21!

Using the generating function

F2~x,J!5E
e3

x

p dx, ~2.22!

the angle variable is given by

c5
]F2

]J
5A 6

e12e3
QF~wum!5Qt, ~2.23!

whereQ(J)5dH/dJ is the amplitude-dependent synchro-
tron tune given by Eq.~2.9!, andF(wum) is the incomplete
elliptic integral given by

F~wum!5E
0

w dz

A12msin2z
, w5arcsinA x2e3

e22e3
,

~2.24!

with modulom of Eq. ~2.7!.

C. The separatrix orbit and the bucket area

The maximum action of the bounded motion is given by

Jsep5
1

2p R
sep

p dx5
3

5p
. ~2.25!

Thus the bucket area of the (f,d) phase space is given by
~see Appendix A!

A
B
5
6

5 S uh0u5/2

uh1u2
D S 2phb2E

eVucosfsu
D 1/2. ~2.26!

In contrast to the nominal synchrotron Hamiltonian, the
bucket area of the QI Hamiltonian increases withdecreasing
rf voltageV and ucosfsu. Note also that the bucket area is
proportional touh0u5/2/uh1u2. For a lattice with a smallh0 , a
proper correction forh1 becomes necessary in order to pro-
vide a stable phase space for the beam bunch.

The separatrix orbit, which corresponds tom51, is given
by

x~ t !512
3

cosht11
, p~ t !5

3 sinht

~cosht11!2
, ~2.27!

where the phase space for the bounded motion is limited by

xPF2
1

2
,1G , pPF2

1

A3
,
1

A3G .
This means that the maximum tolerable momentum width is
given by

d̂5
uh0u
2uh1u

. ~2.28!

However, we must keep in mind that the damping coeffi-
cient is also enhanced for a QI lattice. Due to the synchrotron
radiation damping, the equation of motion for QI storage
rings is given by~see Appendix A!

x91Ax81x2x250, ~2.29!

where

A5
l

ns
5

U0JE
2pE0ns

~2.30!

is the effective damping coefficient with the damping decre-
ment l. Table III in Appendix A lists values for damping
coefficientA for some non-QI storage rings. For QI storage
rings, the effective damping coefficient is enhanced by the
corresponding decrease in the synchrotron tune, where the
value ofA may vary from 0 to 0.5.

Including the damping term, the basin of attraction which
damps to a stable fixed point~SFP! is enlarged. Figure 3
shows the basin of attraction for the damping coefficients
A50,0.2,0.5, respectively. A practitioner’sdefinitionof the
‘‘stable phase space area’’~bucket area! is the phase space
area that damps to the fixed point attractor and is bounded by
the linex<1 or Dp/p0<uh0u/uh1u. The right plot of Fig. 3
shows the ‘‘bucket area’’ enhancement factor as a function
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of the damping parameterA. Here the enhancement factor is
the ratio of the ‘‘bucket areas’’ with and without damping.

The shape of the attractor basin can be understood as
follows. Consider the basin of attraction with the damping
parameterA50.5. The particle on the limiting trajectory
along the ‘‘separatrix,’’ clockwise in (x,p) phase space, ex-
periences damping towards the center of the bucket. Its ‘‘en-
ergy’’ is gradually reduced along its trajectory. As it reaches
the ‘‘unstable fixed point’’ of the undamped Hamiltonian
system, its energy is equal to that of the separatrix orbit
without damping, i.e.,E51

6. This feature seems to be inde-
pendent of the magnitude of the damping parameter shown
in the left plot of Fig. 3. Using this property, we can estimate
the increase in phase space area as follows.

First, we launch a particle from the unstable fixed point
~UFP! at (p50, x51) and let the particle move along the
separatrix~limiting trajectory! counterclockwise. Instead of
damping, the particle gains energy due to the reverse motion.
The amount of energy gained is given by

DE'AE
2`

`

p2~ t !dt5
6

5
A, ~2.31!

where the separatrix trajectory of Eq.~2.27! is used. Thus the
equivalent energy of the limiting trajectory isEeq5

1
61

6
5A.

We now estimate the bucket area of the limiting trajectory as
the area enclosed by the particle trajectory with an equivalent
energyEeq, i.e.,

A~Eeq!' R
x<1

pdx5
6

5
1A3F S 11

36

5
AD 1/221G

3S 11
16

15
AD . ~2.32!

Thus the bucket area enhancement factor is approximately
given by

F'11
5A3
6 F S 11

36

5
AD 1/221G S 11

16

15
AD , ~2.33!

which agrees with numerical simulations shown in the right
plot of Fig. 3.

D. Expansion of phase space coordinates and sum rules

Expansion of phase space coordinates in action-angle
variables is important in obtaining essential characteristics of
particle motion. Sincex(t) is an even function oft or c, we
obtain

x~ t !5g01 (
n51

`

gncos~nc!, ~2.34!

where

g05e31~e12e3!
K~m!2E~m!

K~m!
,

gn5~e12e3!
2p2

K2~m!

~21!nnqn

12q2n
, ~2.35!

with

q5e2pK8/K5
m

16
18S m16D

2

184S m16D
3

1•••,

c5
p

2K
Ae12e3

6
nsu5Qnsu5Qt,

whereK(m) andE(m) are the complete elliptic integrals of
the first and second kind, respectively. Similarly, the expan-
sion of p becomes

p5
dx

dt
52Q(

n51

`

ngn sinnc, ~2.36!

FIG. 3. The stable phase space
area with the effective damping
coefficients A50, 0.2, 0.5 is
shown in the left graph with dif-
ferent shades. We define the op-
erational ‘‘bucket area’’ as the
stable phase area bounded by the
x<1. The bucket area enhance-
ment factor, defined as the ratio of
the stable phase space areas with
and without damping, is plotted as
the function of the damping coef-
ficient A on the right plot.
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whereQ5Q(J) is the tune of the system. It is worth noting
that the expansion of the coordinatex contains all harmonics.
This differs from the similar expansion in the nominal rf
Hamiltonian, where only odd harmonics are present. Since
gn;nqn at smallq, all gn coefficients are zero at the center
of the bucket whereJ50. Near the center of the bucket,
whereq is a very small number, the motion is dominated by
the n51 andn52 harmonics, i.e., the dipole and quadru-
pole modes. If external phase modulation is applied to the
system, the system will execute dipole and quadrupolelike
oscillations that will be discussed in the next section. Figure
4 shows the Fourier amplitudesg0 ,g1 ,g2 and the parameter
q as a function ofE. Because theg1 andg2 of nearby har-
monics are large, they may interact coherently to give rise to
higher order parametric resonances.

The expansion coefficients of Eq.~2.34! satisfy the sum
rules ~see Appendix C!

Sp~J!5
1

2pE p2dc5QJ5
Q2

2 (
n51

`

n2gn
2 , ~2.37!

Sx~J!5
1

2pE x2dc5g0
21

1

2( gn
25g0 , ~2.38!

or equivalently

(
n51

`

gn
2~J!52g0~12g0!. ~2.39!

Sinceg051 on the separatrix, the strength of all harmonics
must vanish on the separatrix orbit. Because(n51

` n2gn
2 di-

verges atJ5Jsep, gn decreases slowly with respect to the
mode numbern near the separatrix.

III. PARTICLE DYNAMICS WITH PHASE MODULATION

In the presence of the phase modulation, the Hamiltonian
in the normalized phase space coordinates is given by

H5
p2

2
1
1

2
x22

1

3
x31vmBxcosvmt, ~3.1!

where the effective modulation amplitude is

B5
h1a

h0ns
, ~3.2!

vm5nm /ns is the normalized modulation tune, anda and
nm are the rf phase modulation amplitude and the modulation
tune in the original accelerator coordinate system, respec-

FIG. 4. The strength functionsg0 ,g1 ,g2 and the parameterq
are plotted as a function ofE.

FIG. 5. The Poincare´ surfaces of section for a QI Hamiltonian withB50.003 andvm50.96 for the left plot andB50.0055 and
vm51.97 for the right plot. HereB andvm are rf phase modulation amplitudes and tunes, respectively. The separatrix trajectory is shown
in this case for marking the boundary of stable motion of the unperturbed Hamiltonian. In reality, the separatrix is destroyed by the harmonic
modulation.
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tively. BecauseuBu;uh0u23/2, the effective modulation am-
plitudeB is greatly enhanced for QI storage rings.

Including the damping force, the equation of motion becomes

x91Ax81x2x252vmB cosvmt, ~3.3!

where the effective damping coefficientA is given by Eq.
~2.30!. This section discusses the effects of rf phase modu-
lation.

A. Parametric resonances and periodic solutions

First, we will discuss the equation of motion in the ab-
sence of the friction force, where the Hamiltonian with phase
modulation can be expressed as

H5H0~J!1
1

2(n51

`

vmBgn~J!@ cos~nc2vmt !1 cos~nc

1vmt !#. ~3.4!

When the modulation frequency is near a synchrotron har-
monic, e.g.,vm'nQ(J), Hamiltonian tori will be coherently
perturbed by the resonance term due to the stationary phase
condition. Transforming the Hamiltonian into the resonance
rotating frame with the generating function

F25S c2
vm

n
t D J1 ,

the time averagedHamiltonian in the resonance rotating
frame becomes

^H1&5H~J1!2
vm

n
J11hn~J1! cos~nc1!. ~3.5!

Since the effective resonance strengthhn(J)5
1
2vmBgn(J) is

proportional togn , the expansion coefficients of the phase
space coordinate in Eq.~2.34! are called the resonance
strength function. There aren stable andn unstable fixed
points for the resonance Hamiltonian Eq.~3.5! given by

sinnc1FP50, vm5nQ~J1FP!6n
dhn
dJ

uJ5J1FP
. ~3.6!

Figure 5 shows Poincare´ surfaces of section with parameters
(B,vm)5(0.003,0.96) and~0.0055, 1.97!, respectively. Note
here that the Poincare´ surface of section atvm'1 shows two
resonance islands. These two resonance islands rotate around
the center of the bucket with tuneQ(JFP). At vm'2, there
are two outer resonance islands and one inner resonance is-
land shown on the right plot of Fig. 5. These two outer
resonance islands rotate about the center of the phase space
at a tune ofvm/2.

In the presence of a weak damping force, SFPs of para-
metric resonances turn into attractors. Figure 6 shows the
basin of attraction for the SFPs with parameters
B50.06, vm50.86, andA50.05 obtained from tracking
1503150 particles with an initial uniform distribution in the
phase space. Note that the boundary of the basin of attraction
exhibits fractal structure. Since orbits near the separatrix can
easily be destroyed, many phase space points near the sepa-
ratrix become unstable in the presence of weak modulation.

1. Mechanism for higher order resonances

The Hamiltonian in Eq.~3.4! is composed of a web of
primary parametric resonances. If the strengths of these pri-
mary parametric resonances are large, they can interact co-
herently to generate a series of secondary parametric reso-
nances@11#. Figure 7 shows the Poincare´ surface of section
for vm51.45 andB50.065. We note that there are three

FIG. 6. The basin of attraction
for a QI dynamics system with pa-
rameters A50.05, B50.06, and
sm50.86, obtained from numeri-
cal simulations with 1503150
particles uniformly distributed in
the phase space. All lightly shaded
particles will damp to the outer at-
tractor, and all particles with the
darker shade will coverge to the
inner attractor. Other particles in
the phase space are lost. Note par-
ticularly that the fractal struture
appears at the boundary of the ba-
sin of attraction.
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outer resonance islands and one inner resonance island which
should appear atvm'3. To understand the origin of second-
ary parametric resonances, we will study the truncated
Hamiltonian with two neighboring harmonics and discuss the
mechanism for secondary parametric resonances based on
the canonical perturbation method.

We consider the case wheren2Q(J)<vm<n1Q(J). The
Hamiltonian of Eq.~3.4! is dominated byn1:1 andn2:1 reso-
nances and can be approximated by

H'E~J!1hn1~J! cos~n1c2vmt !1hn2~J! cos~n2c2vmt !,
~3.7!

wheren1 andn2 are neighboring harmonics. Using the gen-
erating function

W2~c,J̄!5c J̄1Fn1
~ J̄! sin~n1c2vmt !

1Fn2
~ J̄! sin~n2c2vmt !, ~3.8!

the new action-angle variables (c̄,J̄) are related to (c,J) by

J5 J̄1n1Fn1
~ J̄! cos~n1c2vmt !

1n2Fn2
~ J̄! cos~n2c2vmt !,

c 5̄c1Fn1
8 ~ J̄! sin~n1c2vmt !1Fn2

8 ~ J̄! sin~n2c2vmt !.

~3.9!

The new Hamiltonian becomes

H̄5E~ J̄!1$@~n1Q2vm!Fn1
1hn1~ J̄!# cos~n1c̄2vmt !1@~n2Q2vm!Fn2

1hn2~ J̄!# cos~n2c̄2vmt !%

1
1

2

]Q

] J̄
@n1Fn1

cos~n1c̄2vmt !1n2Fn2
cos~n2c̄2vmt !#

21F ]hn1

] J̄
cos~n1c̄2vmt !1

]hn2

] J̄
cos~n2c̄2vmt !G

3@n1Fn1
cos~n1c̄2vmt !1n2Fn2

cos~n2c̄2vmt !#, ~3.10!

where we usedc'c̄. By settingFn1
52hn1( J̄)/(n1Q2vm) and Fn2

52hn2( J̄)/(n2Q2vm), the Hamiltonian due to the
second order perturbation becomes

H̄5E~ J̄!1S 12 ]Q

] J̄
n1
2Fn1

2 1
]hn1

] J̄
n1Fn1D cos2~n1c̄2vmt !1S 12 ]Q

] J̄
n2
2Fn2

2 1
]hn2

] J̄
n2Fn2D cos2~n2c̄2vmt !1S ]Q

] J̄
n1n2Fn1

Fn2

1
]hn1

] J̄
n2Fn2

1
]hn2

] J̄
n1Fn1D cos~n1c̄2vmt ! cos~n2c̄2vmt !. ~3.11!

FIG. 7. Poincare´ surfaces of
section for a QI Hamiltonian with
B50.065, vm51.45. The sec-
ondary resonance arises from the
interaction of 1:1 and 2:1 primary
parametric resonances.
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Near the resonance condition atvm'1/2(n11n2)Q(J), the
Hamiltonian can be approximated by

H̄'E~ J̄!1h̃~n11n2! cos@~n11n2!c̄22vmt#, ~3.12!

where

h̃~n11n2!5
1

2

]Q

] J̄
n1n2Fn1

Fn2
1
1

2

]hn1

] J̄
n2Fn2

1
1

2

]hn2

] J̄
n1Fn1

is the effective resonance strength for the secondary
(n11n2):2 resonance. Possible secondary resonances from
parent 1:1 and 2:1 parametric resonances are listed as fol-
lows:

~1:1!1~2:1!→
3:2 5:3 7:4 9:5•••
4:3 6:4 8:5 10:6•••
5:4 7:5 9:6•••.

Here, the 3:2 resonance shown in Fig. 7 is the lowest order
secondary parametric resonance. Because these parametric
resonances overlap with each other, they can be easily de-
stroyed by the strong damping. However, they provide a sto-
chastic background for this dynamical system.

2. Harmonic linearization method and periodic solutions

The Hamiltonian formalism is not applicable when the
damping parameterA of Eq. ~3.3! becomes large. The attrac-
tor solutions or the periodic solutions can be obtained by the
harmonic linearization method@14#. Let the ansatz of Eq.
~3.3! be given by

x5X01X1 cos~vmt1x1!.

Substituting the ansatz into Eq.~3.3! and keeping only the
first harmonic in the expansion, we obtain

vm
2B25A2vm

2X1
21~vm

2 2A122X1
2!2X1

2 , ~3.13!

with tanx152vmA/(vm
2 2A122X1

2) and X05(1
2A122X1

2)/2. In the weak damping and small modulation
amplitude approximation, the modulation amplitude is re-
lated to modulation tune byvm'12 1

2X1
2 . This result agrees

well with that of Eq.~3.6! for then51 mode. Amplitudes of
attractors obtained from numerical simulations are shown in
the upper plot of Fig. 8, whereA50.1 andB50.1 ~square!
and 0.3~circle!, respectively. The lower plot shows the am-
plitude of attractors forB50.5 andA50.5. Solid lines show
the solution of Eq.~3.13!, which matches with the attractor
amplitude obtained from numerical simulations. In particu-
lar, if the modulation amplitude is large, there are regions of
tune space where attractors will cease to exist and subhar-
monic and higher-harmonic excitations will appear.

The amplitude of a subharmonic atvm'1/2, . . . , and a
higher harmonic atvm'2, . . . can beobtained by the ansatz

x~ t !5X01X1 cos~vmt2x1!1X2 cos~2vmt2x2!,
~3.14!

x~ t !5X01X1 cos~vmt2x1!1X1/2cosS vm

2
t2x1/2D ,

~3.15!

respectively. For example, the subharmonic amplitude is
given by

X25
X1
2

2@~4vm
2 2X1

22A122X1
2!214vm

2A2#1/2
.

Such a procedure has been extensively tested in the study of
many dynamical systems@14,15#.

3. Relation between the periodic solution
and the parametric resonances

A close relation exists between parametric resonances of
the Hamiltonian system and periodic solutions of the damp-
ing system. When a friction term is added to the Hamiltonian
system, the particle moves slower in the phase space and the
tune of the system is lowered. At the same time, the 1:1
parametric resonance becomes more important so that the
amplitude of particle oscillations becomes larger. This will
also lower the bifurcation tune of the 2:1 resonance. The
decrease of the threshold 2:1 resonance bifurcation tune is
evident in the lower plot of Fig. 8, where the bifurcation tune
of the 2:1 resonance isvm'1.515 for A50.5 instead of

FIG. 8. The amplitude of the steady state solution, called re-
sponse, obtained numerically is plotted as a function ofvm for
A50.1 ~upper plot!, with modulation amplitudesB50.1 ~rect-
angles!, B50.3 ~circles!, respectively, and forA50.5 ~lower plot!
with B50.5. Solid lines correspond to the solutions of Eq.~3.13!.
Two characteristic features shown in this figure are~1! the bifurca-
tion threshold of the 2:1 parametric resonance is lowered by the
friction force, and ~2! a very strong stop band appears around
vm51.
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vm'2.1 for A50.1. Because the Mathieu instability has a
finite width in the tune space, the bifurcation tune occurs at
vm52.1 instead of 2 for a small damping parameterA. Fur-
thermore, SFPs of dominant parametric resonances become
attractors while SFPs of weak parametric resonances are de-
stroyed. In other words, periodic solutions of damped differ-
ential equations can be associated with the corresponding
SFPs of strong parametric resonances in equivalent Hamil-
tonian systems, where a few strong parametric resonances
survive to become attractors. If attractors exist, particles will
damp to periodic solutions, or equivalently, SFPs of para-
metric resonances.

The characteristic phase oscillation tune for the attractor
associated with a 2:1 parametric resonance isvm/2. More
generally, the attractor associated with then:m parametric
resonance will have an orbiting tune of (m/n)/vm . For ex-
ample, although the Poincare´ surfaces of section for the 3:2
secondary resonance and the 3:1 primary resonance are simi-
lar, their time-dependent function is different. The primary
3:1 resonance has a time-dependent function of cos1

3vmt,
while the 3:2 secondary resonance has a time-dependent
function of cos23vmt. In the Poincare´ surfaces of section, the
difference can be visualized as follows: Particle motion in
the 3:1 primary resonance will jump from an island to the
immediate neighboring island consecutively. However, par-
ticles jump from one island to the next neighboring island at
the secondary 3:2 resonance condition. Using such a signa-
ture, the role of parametric resonances in chaos can be iden-
tified. Since secondary resonances arising from 1:1 and 2:1
primary resonances overlap with each other, they provide the
stochastic background for global chaos.

B. The 2:1 parametric resonance

The period-2 parametric resonance is known to play a
crucial role in chaos. The route of chaos is usually presented
by a vivid portrait of sequences of period-2 bifurcation. The
period-2 bifurcation is related to the 2:1 parametric reso-
nance or the Mathieu instability in a dynamical system@12#.
For the nominal rf system with rf phase modulation, the reso-
nance strength for then52 parametric resonance is zero
@13#. If the modulation frequency is near 2, i.e.,vm'2, the
n52 parametric resonance is important for a QI Hamil-
tonian. The Hamiltonian in the zero friction approximation is
given by

H5H0~J!1
1

2
vmBg2~J!cos~2c2vmt !1DH~ t !,

~3.16!

where all incoherent time-dependent terms are lumped into
DH(t). Using the resonance strength function of Eq.~2.35!,
and the generating function

F2~c,J1!5S c2
vm

2
t D J1 ,

the Hamiltonian can be expressed as

H2:15H0~J1!2
vm

2
J1

1
1

2
vmBg2~J1!cos~2c1!1DH2:1~ t !,

'S 12
vm

2 D J12 5

12
J1
21vmf 2J1 cos2c11DH2:1~ t !,

~3.17!

wheref 2'
1
6B(p/2K)

2, and we have used a small amplitude
approximation for the unperturbed time-independent Hamil-
tonian. The right plot of Fig. 5 shows an example of the
Poincare´ surface of section for the 2:1 parametric resonance.
Since the time averaged Hamiltonian^H2:1& of Eq. ~3.17!
has been extensively studied in Ref.@12#, we will not repeat
it here. It is worth mentioning that the remnant time-
dependent termDH2:1(t) plays the role of harmonic modu-
lation to the tori of the primary 2:1 parametric resonance.
Since the island tuneQ2:1 of the 2:1 primary parametric
resonance has a characteristic similar to that of Fig. 2~see
Ref. @12# for analytic expression of the island tune!, second-
ary parametric resonance islands within the primary reso-
nance island can be created. This self-similar phenomenon
provides the richness of the portrait of chaos.

C. Chaos through period-2 bifurcation

The path that dynamical systems undergo in order to de-
velop global chaos is a fascinating subject. Figure 9 shows
the phase space coordinatep of the Poincare´ surface of sec-
tion as a function of modulation frequency near the region of
period-2 bifurcation with parametersA50.5 andB50.5. For
vm>1.515, there is only one attractor~see Figs. 8 and 9!.
When vm is varied below 1.515, two attractors suddenly
appear in the phase space. Decreasingvm further, we find
that four attractors appear in the phase space. The sequence
of period-2 bifurcation continues until global chaos at
vm'(52A5)/251.3819 66 is reached.

FIG. 9. The phase space coordinatep of the attractor in the
Poincare´ surface of section is plotted as a function of the modula-
tion frequency~tune! vm near the region of global chaos for param-
etersA50.5 andB50.5. Note that the phase space attractor bifur-
cates into two at the modulation tune of about 1.515. It follows a
series of period-2 bifurcations before reaching global chaos at
vm5(52A5)/2.
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Figure 10 shows the fast Fourier transform~FFT! spectra
of steady state solutions forA50.5, B50.5, with
vm51.39~top plot!, 1.4204~middle plot!, and 1.436~bottom
plot!. The first period-2 bifurcation is associated with the
occurrence of a12 harmonic in the FFT spectrum. This can be
identified as the primary 2:1 parametric resonance. The sec-
ond period-2 bifurcation corresponds to the appearance of a
1
4 harmonic~see the bottom plot of Fig. 10!. Occurrence of a
1
6 harmonic in the route of global chaos is also evident from
the FFT spectrum shown in the middle plot of Fig. 10. The
FFT spectrum of global chaos has a characteristic of white-
noise-like structure shown in the top plot of Fig. 10.

Figure 11 shows Poincare´ surfaces of section with
A50.5, B50.5, andvm51.39, 1.436, 1.48, and 1.54, re-
spectively. Atvm51.54, the system has a single attractor
associated with a 1:1 parametric resonance. Atvm51.48,
the attractor bifurcates into two attractors, which are con-
firmed to be SFPs of the 2:1 parametric resonance. At
vm51.436, each SFP of the 2:1 parametric resonance bifur-
cates into two attractors within the basin. Atvm51.39, par-
ticles damp to attractors composed of fractal lines with no
definite tune. This corresponds to the breakdown of the fixed
point attractors within the basin of attraction for the 2:1 para-
metric resonances. It is also interesting to note that periodic
attractors are located near the band of chaotic attractors
shown in Fig. 11.

D. Transition to global chaos and Melnikov integral

We observed in the last few sections that the QI dynamics
system would encounter global chaos when the modulation
amplitude was large. What is the critical modulation ampli-
tude for the onset of global chaos? A method of handling this
estimation is the evaluation of the Melnikov integral.

The Melnikov integral method has often been applied to
study the chaotic transition of many dynamical systems. If
the stable and unstable orbits from a hyperbolic fixed point

cross each other, the dynamical system becomes homoclinic,
an indicator of chaotic motion. Calculating the distance be-
tween the stable and unstable orbits perturbatively, the
Melnikov integral becomes@14#

D52 È`

@vmBp~ t2t0!cosvmt2Ap2~ t2t0!#dt.

~3.18!

FIG. 10. The FFT spectra of
steady state solutions with param-
eters A50.5, B50.5, and
vm51.39 ~top!, 1.4204~middle!,
1.436~bottom! are plotted.

FIG. 11. The phase space map (p,x) of the Poincare´ surface of
section for steady state solutions withA50.5,B50.5 is shown. The
parameterC is the modulation tunevm . The diamond symbol
shows a single attractor atvm51.54 which is associated with the
1:1 parametric resonance. Rectangular symbols show the period-2
bifurcation, which is related to the 2:1 parametric resonance or
Mathieu instability. Triangular symbols show attractors for the sec-
ond period-2 bifurcation, which is unambiguously identified as the
~2:1! secondary parametric resonance within the primary~2:1! reso-
nance island. Dots correspond to the strange attractor with global
chaos atvm51.39.
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Usingx andp of the separatrix orbit given by Eq.~2.27!, the
Melnikov integral for the Weierstrass̀ equation becomes

D53vmB sint0E
2`

` sinht sinvmt

~cosht11!2
dt19A È` sinh2t

~cosht11!4
dt

51
6pvm

3B sint0
sinhpvm

1
6A

5
. ~3.19!

The condition for global chaos becomes

Bcr5
A

5p

sinhpvm

vm
3 . ~3.20!

Based on the Melnikov integral method, the critical modula-
tion amplitudeBcr for the chaotic condition is proportional to
the damping parameterA. Since the ratioBcr /A is at a mini-
mum aroundvm'1, the system is most sensitive to external
harmonic modulation near the first order synchrotron har-
monic.

To verify the validity of the Melnikov integral estimation,
we will perform some numerical simulations. Figure 12
shows the critical modulation parameterBcr for the onset of
global chaos as a function ofvm , where the onset of global
chaos isdefinedas the condition that the entire bucket is
unstable. The estimation obtained from the Melnikov inte-
gral is also shown for comparison. We observe that the
Melnikov integral provides a reasonable prescription for glo-
bal chaos in the phase space. This agreement may result from
the sharp drop ofQ(E) near the separatrix. However, the
critical modulation amplitudeBcr obtained from numerical
simulations shows a cusp atvm'2.

IV. SUGGESTIONS FOR EXPERIMENTAL
OBSERVATION

There have been several low momentum compaction fac-
tor ~low-ac) experiments in synchrotron radiation light
sources~see Ref.@6# for a review!. Experiments in UVSOR
in Japan and the SUPER-ACO in France have shown that if
the second order momentum compactionh1 was reduced,
the first momentum compaction factorac0 could be reduced
by a factor of 100, resulting in a factor of 10 reduction in the
bunch length at a low beam current. However, at high cur-
rents, experimental results seemed to indicate that the poten-
tial well distortion dominated the bunch length even in the
low-ac , or negative-ac , regime. The experiments at the
ALS further demonstrated that a bunch could split into sat-

ellite bunches@7#. Although detailed measurements of these
satellite frequencies are not yet available, we believe that
these satellite beamlets may arise from the 1:1 parametric
resonance shown in the left plot of Fig. 5.

Based on our analysis, we would like to make the follow-
ing suggestions for future low-ac experiments. Since the
bucket area of the QI Hamiltonian is proportional to
(V0u cosfsu)21/2, QI experiments should study the beam sta-
bility at a lower rf voltageV with a large synchronous angle.
In addition, since the effective damping coefficient is in-
versely proportional tons , i.e., A5l/ns , and the stable
phase space area increases with the damping parameterA,
future experiments should examine the actual stable area.
The stable phase space area can be studied through generat-
ing a phase kick to the beam and observing the survival of
the beam particles. The rf phase noise is enhanced by the
factor h1 /uh0u3/2, and is hence a nuisance for QI storage
rings. However, it is important to understand the effect of
noise on particle dynamics. Carefully controlled experiments
with rf phase modulation can be a step towards gaining more
insight into the QI Hamiltonian system.

V. CONCLUSION

In conclusion, we have transformed the synchrotron equa-
tion of motion in the QI regime into a universal Weierstrass
equation with the solution expressed in Jacobian elliptic
functions. The phase space coordinates have been expanded
in action-angle variables. The expansion coefficients, com-
monly known as the strength function, play an important role
in determining the strength of parametric resonances result-
ing from rf phase or voltage noise. We have also shown that
the strength function vanishes at the center of the bucket and
the separatrix, and that higher-harmonic parametric reso-
nances in the QI dynamical system are much more important
near the separatrix. Thus it is easier to attain chaos for this
dynamical system.

We have also found that the effective damping force for
the QI Hamiltonian is inversely proportional touh0u1/2, hence
making the effective damping force larger in QI storage
rings. The damping force can increase the stable phase space
area and distort the ‘‘phase space ellipse.’’ However, we
have also shown that the effective rf phase modulation am-
plitude is proportional touh0u23/2, and thus particularly en-
hanced in the QI regime. The effects of rf phase modulation
can induce many parametric resonances. When a weak
damping force is included, the stable fixed point of the para-
metric resonance becomes an attractor which is also the

FIG. 12. The critical modula-
tion amplitudeBcr is shown as a
function of vm for A50.05 ~left
plot!, andA50.2 ~right plot!. The
symbols are obtained from nu-
merical simulations, and the lines
are obtained from the Melnikov
integral method. Note that a cusp
occurs at the transition of the 2:1
parametric resonance.

826 54A. RIABKO et al.



steady state solution of the differential equation. The beam
particles will damp to attractors and form multiple bunches
orbiting about the center of the bucket. It is possible that the
satellites observed in Ref.@6# correspond to beamlets in the
1:1 parametric resonance islands.

As the damping force gets stronger, the phase space be-
comes distorted. We have demonstrated that the steady state
solution can be well approximated by the harmonic linear-
ization method. When the modulation amplitude was also
large, our numerical simulations showed that the system ex-
hibited chaos through a series of period-2 bifurcations, where
a strange attractor occurred near the onset of global chaos.
The Melnikov integral method was also found to provide a
reasonable but not accurate prediction for the onset of chaos.

ACKNOWLEDGMENTS

This work was supported in part by the DOE, Grant No.
DOE-DE-FG02-93ER40801, and the NSF, Grant No. PHY-
9512832. We thank Allen Lee for his help in reading the
manuscript.

APPENDIX A: THE SYNCHROTRON HAMILTONIAN

Using (f,d) as conjugate phase space coordinates, where
f is the rf phase angle andd is the fractional momentum
deviation from the synchronous particle, synchrotron map-
ping equations are given by

dn115dn1
eV

b2E
@ sin~fn111fs!2 sinfs#22pldn ,

~A1!

fn115fn12ph~h0dn111h1dn11
2 !, ~A2!

where the subscript stands for the revolution number,V is
the rf voltage,h is the harmonic number,fs is the synchro-
nous phase,h0 ,h1 are linear and nonlinear phase slip fac-
tors, andl is the damping decrement. Neglecting the friction
term, the difference equation can be cast into the Hamil-
tonian given by

H5
1

2
hh0d

21
1

3
hh1d

31
eV

2pb2E
@cos~f1fs!1f sinfs#,

~A3!

where u5s/R serves as the time coordinate, andR is the
mean radius of the storage ring. The fixed point of this
Hamiltonian is given by Table II.

For a regular rf bucket, the maximum bucket height is
given by

d̂5S 2eV

ph0E
F S p

2
2fsD sinfs2cosfsG D 1/2. ~A4!

Transition from the nominal rf bucket to the ‘‘a bucket’’
occurs when the separatrix of these two buckets merge into
one @2#, i.e.,

U h0

h1
U<d̂. ~A5!

In the QI regime, whereuh0 /h1u! d̂, the Hamiltonian can be
approximated by

H5
1

2
hh0d

21
1

3
hh1d

32
eVcosfs

4pb2E
f2, ~A6!

where Hamilton’s equation of motion becomes

ḋ5
eVcosfs

2pb2E
f, ḟ5hh0d1hh1d

2, ~A7!

or

d̈1ns
2d1

h1

h0
ns
2d250, ~A8!

where

ns5AheVuh0 cosfsu
2pb2E

, h0 cosfs<0 ~A9!

is the small amplitude synchrotron tune. Now, we define the
phase space coordinatex and the new time coordinatet as

x52
h1

h0
d, t5nsu. ~A10!

Then the synchrotron equation of motion becomes

x91x2x250, ~A11!

where the prime corresponds to the derivative with respect to
the time coordinatet. Letting

p5x85
h1ns
h0
2 f ~A12!

be the conjugate momentum to the coordinatex, the Hamil-
tonian for the QI storage rings becomes

H5
1

2
p21

1

2
x22

1

3
x3, ~A13!

where (x,p) are conjugate phase space variables.
Defining the action variable as

J5
1

2p R pdx, ~A14!

the area in (f,d) phase space is given by

TABLE II. Fixed points of the nonlinear synchrotron Hamil-
tonian.

f d Characteristics

Nominal fixed points 0 0 SFP
p22fs 0 UFP

Nonlinear compaction p22fs 2h0 /h1 SFP
Fixed points 0 2h0 /h1 UFP
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A5 R fdd5S h0
5/2

h1
2 D S 2phb2E

eVu cosfsu
D 1/22pJ. ~A15!

The bucket area is obtained by substituting the action of the
separatrix orbit which gives

A
B
5
6

5 S uh0u5/2

uh1u2
D S 2phb2E

eVucosfsu
D 1/2. ~A16!

Note here that the bucket area increases as the rf voltageV
anducosfsu decreases. The constrainteVsinfs5U0 is needed
to compensate energy loss due to synchrotron radiation.

1. Synchrotron tunes of the QI and nominal rf Hamiltonian

The difference in the amplitude dependence of the syn-
chrotron tunes for the QI Hamiltonian and the nominal rf
Hamiltonian plays an important role in the particle dynamics.
Figure 13 shows the normalized synchrotron tuneQs(E)/ns
vs the normalized energyE/Esepfor the QI Hamiltonian~thin
line! and the nominal synchrotron Hamiltonian~thick solid
line with dots!. In particular, we note that the synchrotron
tune for the QI Hamiltonian drops sharply to zero at the
separatrix, which causes many parametric resonances to
overlap one another. Thus the QI dynamical system is much
more sensitive to harmonic modulation than the nominal rf
Hamiltonian.

2. Phase space damping

In the presence of the phase space damping, the equation
of motion is given by

d̈1ns
2d1

h1

h0
ns
2d21lḋ50, ~A17!

wherel5JEU0 /(2pE0) is the damping decrement,JE'2
is the damping partition number for synchrotron phase space,
andU0 is the energy loss per revolution. Table III lists some
typical parameters of storage rings, where LEP, HERB, APS,

CESR, and ALS stand respectively for the large electron
positron collider at CERN, the high energy ring of the B
factory design at SLAC, the advanced photon source at Ar-
gonne National Laboratory, the Cornell electron storage ring,
and the advanced light source at the Lawrence Berkeley Na-
tional Laboratory

Expressing the equation of motion in the normalized
phase space coordinates, we obtain

x91x2x21Ax850, ~A18!

where the normalized damping coefficient is given by

A5
l

ns
. ~A19!

The parameterA for some non-QI-electron storage rings is
listed in Table III. We note thatA is relatively small for
nominal momentum compaction lattices. On the other hand,
if the momentum compaction factorac0 is lowered by a
factor of 100, the effective damping parameter will increase
by a factor of 10. We thus choose to studyAP@0,0.5#.

3. rf phase modulation Hamiltonian

When the synchrotron tune of a QI lattice becomes
smaller, the system may become much more susceptible to
the rf phase noise. In the presence of the phase modulation,
the equation of motion is given by

d̈1ns
2d1

h1

h0
ns
2d25nma cosnmu, ~A20!

wherenm is the modulation tune, anda is the phase modu-
lation amplitude. Using the normalized phase space coordi-
nates, the equation of motion becomes

x91x2x252vmB cosvmt, ~A21!

wherevm5nm /ns , and the effective modulation amplitude
becomes

B5
h1

h0ns
a. ~A22!

Thus the effective phase modulation amplitude, proportional
to uh0u23/2, is greatly enhanced due to the smallness of the
first order phase slip factoruh0u.

FIG. 13. The normalized synchrotron tunesQ5Qs(E)/ns for
the QI Hamiltonian~thin line! and the nominal synchrotron Hamil-
tonian~thick line with dots! are shown as a function of the normal-
ized energyE/Esep.

TABLE III. Typical parameters of electron storage rings.

LEP HERB APS CESR ALS

E0 ~GeV! 55 9 7 6 1.5
U0 /E0 ~units of 1023) 4.8 0.39 0.78 0.32 0.074
ac0 ~units of 1024) 3.9 24.4 2.4 152 14
ns 0.085 0.05 0.0066 0.064 0.0082
A ~damping! 0.018 0.0024 0.037 0.002 0.003
f 0 ~kHz! 11.2 136 283 390 1524
f syn ~kHz! 0.956 6.8 1.9 25 12.5
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APPENDIX B: RELATION BETWEEN THE
WEIERSTRASS ` FUNCTION AND JACOBIAN

ELLIPTIC FUNCTION
The Weierstrass function satisfies the equation

S d`~u!

du D 254~`2e1!~`2e2!~`2e3!. ~B1!

Letting `5e31(e22e3) sin
2z, the Weierstrass equation be-

comes

E
0

w dz

A12msin2z
5E

0

u
Ae12e3du5Ae12e3

6
t, ~B2!

where

m5
e22e3
e12e3

.

By the definition of the Jacobian elliptic function, the solu-
tion ` is given by

`5e31~e22e3! sin
2w5e31~e22e3! sn

2SAe12e3
6

tUmD .
~B3!

APPENDIX C: SUM RULES

Using the generating function of Eq.~2.22!, we obtain the
coordinate transformation

dc5Q
dx

p
. ~C1!

Thus the sum rule of Eq.~2.37! becomes

Sp~J!5
1

2pE p2dc5
Q

2p R p dx5QJ. ~C2!

Substituting the equation of motionx91x2x250 into Eq.
~2.38!, one obtains

Sx5
1

2pE x2dc5
1

2pE ~x91x!dc5
1

2pE x dc5g0 .

~C3!
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